Evaluation of Selected Stacked Ensemble Models for the Optimal Multi-class Cyber-Attacks Detection
نویسندگان
چکیده
The significant rise in the frequency and sophistication of cyber-attacks their diversity necessitated various researchers to develop strong effective approaches address recurring cyber threat challenges. This study evaluated performance three selected meta-learning models for optimal multi-class detection using University New South Wales 2015 Network benchmark (UNSW-NB15) Intrusion Dataset. results this show confirm ability base models; Naive Bayes, C4.5 Decision Tree, K-Nearest Neighbor solving problems. It further affirms knack duo feature selection techniques stacked ensemble learning optimize ML models' performances. stacking predictions information gain with Model Tree meta-algorithm recorded most improved accuracy Mattew's correlation Coefficient than Multiple Trees (MMT) Multi Response Linear regression (MLR) Meta algorithms.
منابع مشابه
the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)
هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...
15 صفحه اولScalable Detection of Cyber Attacks
Attackers can exploit vulnerabilities to incrementally penetrate a network and compromise critical systems. The enormous amount of raw security data available to analysts and the complex interdependencies among vulnerabilities make manual analysis extremely laborintensive and error-prone. To address this important problem, we build on previous work on topological vulnerability analysis, and pro...
متن کاملAn Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization
Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...
متن کاملModels for multi-view object class detection
Learning how to detect objects from many classes in a wide variety of viewpoints is a key goal of computer vision. Existing approaches, however, require excessive amounts of training data. Implementors need to collect numerous training images not only to cover changes in the same object’s shape due to the viewpoint variation, but also to accommodate the variability in appearance among instances...
متن کاملMulti-class Multi-scale Stacked Sequential Learning
One assumption in supervised learning is that data is independent and identically distributed. However, this assumption does not hold true in many real cases. Sequential learning is that discipline of machine learning that deals with dependent data. In this paper, we revise the Multi-Scale Sequential Learning approach (MSSL) for applying it in the multi-class case (MMSSL). We have introduced th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International journal on cyber situational awareness
سال: 2021
ISSN: ['2057-2182', '2633-495X']
DOI: https://doi.org/10.22619/ijcsa.2020.100132